RECOGNISING ACHIEVEMENT

Chemistry (Salters)

Advanced GCE A2 7887
Advanced Subsidiary GCE AS 3887

Mark Schemes for the Units

June 2006

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2006
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (Salters) (7887)
 Advanced Subsidiary GCE Chemistry (Salters) (3887)

MARK SCHEME ON THE UNITS

Unit	Content	Page
2848	Chemistry of Natural Resources	1
2849	Chemistry of Materials	7
2850	Chemistry for Life	15
$2852 / 01$	Skills for Chemistry	21
2854	Chemistry by Design	29
$*$	Grade Thresholds	37

Mark Scheme 2848
June 2006

\begin{tabular}{|c|c|c|}
\hline 2 ai \& \begin{tabular}{l}
 \\
Allow bracket (and ' \(n\) ') ignore ambiguous attachments
\end{tabular} \& 1 \\
\hline 2 aii \& other monomer must have a double bond/ be unsaturated/ alkene (allow triple bonds) (1); polymer contains (units of) both monomers / polymer is made from different monomers/ different repeating units (1) \& 2 \\
\hline 2 bi \& \begin{tabular}{l}
 \\
water drawn correctly - angular (1) lone pairs on the oxygen forming the bond to an H pointing along bond(1) partial charges on the atoms forming the bond (1) \\
\(\mathrm{O}-\mathrm{H}-\mathrm{O}\) straight (1) \\
If hydrogen bonding shown to incorrect hydrogen, max first two marking points.
\end{tabular} \& 4 \\
\hline 2 b ii \& hydrogen bonds/ stronger imf hold paint to solvent/ hold molecules/ chains (NOT particles) together/make the paint more viscous (AW) \& 1 \\
\hline 2 ci \& \begin{tabular}{l}
chains can move over each other more easily (1); \\
plus three from \\
compound A has permanent dipole-(permanent) dipole forces (1); \\
show where these are formed (1) \\
compound \(B\) has hydrogen bonds (1); \\
intermolecular forces weaker/ fewer in compound A (ora)(1); \\
QWC: Logical, at least two phrases from the list below used correctly: inter-molecular forces; hydrogen bonds; permanent dipole; instantaneous dipoleinduced dipole/ Van der Waals; chains; acid; ester
\end{tabular} \& 4

1

\hline 2 cii \& | |
| :--- |
| cis |
| trans |
| (1) each; (1) for structures alone with no (or incorrect) names or names alone with no/wrong structures. |
| ignore ambiguous attachments and structures not fully displayed | \& 2

\hline 2 c iii \& (No,) no double bond/AW \& 1

\hline \& Total \& 16

\hline
\end{tabular}

3 ai	$\mathrm{CH}_{3} \mathrm{Br} \rightarrow \mathrm{CH}_{3}+\mathrm{Br}$ allow dots	1
3 aii	homolytic/ homolysis ignore photodissociation	1
3 bi	$290 / 6.02 \times 10^{23}(1)$; multiplying by 1000 and evaluating ($\left.4.82 \times 10^{-19} \mathrm{~J}\right)(1)$ no ecf	2
3 b ii	$\begin{aligned} & v=E / h=(\text { ans to }(i)) / h\left(4.82 \times 10^{-19} / 6.63 \times 10^{-34}\right)(1) \\ & \text { correct evaluation }\left(7.27 \times 10^{14} \mathrm{~Hz}\right)(1) \end{aligned}$	2
3 b iii	Greater/higher (1); C-Cl stronger than C-Br ignore reasons (1) mark separately, allow weaker bonds - lower frequency for 1 mark	2
3 ci	it filters/screens/removes (AW) uv (1); plus two from: (uv) of high energy/frequency/ UVC/UVB $10^{16} \mathrm{~Hz} / 200-320 \mathrm{~nm}$ (1); which causes skin cancer/ harms skin/damages DNA (1); affects crops (1) damages eyes(1); damages immune system (1); growth of phytoplankton (1)	3
3 cii	$\mathrm{Br}+\mathrm{O}_{2}$	1
3 c iii	$\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2} / \mathrm{O}_{2}+\mathrm{O}_{2}$	1
3 civ	reactants and catalyst in same phase/state	1
3 cv	line on right-hand graph with lower activation enthalpy (allow double hump) (1) activation enthalpy/energy/ E_{a} labelled twice (1) allow double headed arrow.	2
3 cvi	temperature (1) - molecules have more energy/ move faster (1); more collisions with energy greater than activation energy (1) pressure/concentration (of ozone) (1) - more collisions (1) intensity/amount of uv (1) greater amount of radiation breaks more O_{3} per unit time/ more photodissociation/ more radicals (1) QWC At least two sentences with spelling, punctuation and grammar with only one error in all (1) see QWC sheet	5
3 di	$\mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HBr}(1)$ ignore ss	2
3 dii	carbon is $\delta+$, bromine $\delta-(1)$ (in diagram) polar means electrons shared unequally in the bond/ one atom has a partial positive charge, other partial negative (1) partial only needs to be mentioned once bromine has a greater electronegativity than carbon (ora)/ atoms forming bond have different electronegativities (1);	3
3 d iii	 (1) for each curly arrow left-hand arrow can be straight but must start from part of one lone pair	2
3 div	nucleophile/nucleophilic	1
3 dv	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s})(1)$ (1) for state symbols mark separately (provided aqueous solutions giving solid)	2
3 dvi	cream/ off white/ pale yellow	1
	Total	33

4 a	0 (1); -1 (1); +5 (1) max one for second two if signs follow numbers	3
4 bi	sulphur/S allow sulphur dioxide	1
4 b ii	$3 \times 2500 \times 64 / 127=3779.5 \mathrm{~g}(2)$ omission of one step in calculation scores (1) 2 sig figs (3800) (1) mark separately if there is some calculation	3
4 ci	$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}(2)$ first mark for $21^{-} \rightarrow \mathrm{I}_{2}$; second mark for balancing equation with electrons	2
4 c ii	I/iodine (in $\mathrm{IO}_{3}{ }^{-}$) allow $\mathrm{IO}_{3}{ }^{-} /$iodate (1)	1
4 d	iodine is soluble in kerosene/organic/ hydrocarbon/ non-polar solvents (1) more (than in water) (1) must be a comparison for second mark	2
4 e i	0.023×0.1 moles I (1); $0.0023 \times 127=0.29(2) \mathrm{g}(1)$ ecf	2
4 fi	iodine: solid; grey/black bromine: liquid; brown/red ignore orange four correct scores three; three correct scores two; two correct scores one.	3
4 fii	$4 p^{5} \quad 5 p^{5}$ (1) for 4 and 5 (with some appropriate letter and superscript number) (1) for p^{5} or one mark for one completely correct IGNORE correct extra subshells	2
4 fiii	$\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-}$(2) idea of bromine reacting with iodide (1);	2
4 f iv	it should not get hot/avoid fires IGNORE keep pressurised etc.	1
4 g	ions indicated as $\mathrm{Na}^{+}, \mathrm{I}^{-}(1)$ at least two rows alternating in one plane (1) indication that this continues in third dimension can be in words(1) allow second two marks if ions wrongly labelled	3
4 h	hydrated/hydration IGNORE hydrous	1
	Total	26

Mark Scheme 2849 June 2006

Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{aligned} & \hline! \\ & \text { j} \\ & \text { NOT } \\ & () \\ & \hline \text { ecf } \\ & \text { AW } \\ & \text { ora } \end{aligned}$	```= alternative and acceptable answers for the same marking point = separates marking points = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward = alternative wording = or reverse argument```

Question	Expected Answers	Marks
1 ai	 (1); allow without the C within the ring.	1
1 a ii	 all bonds must be shown (1).	1
1 b	Burning/combustion (1); Energy produced can be used/reducing landfill (1). or recycling AW(1); oil resources saved AW/reducing landfill (1). Do NOT allow cracking, but allow reducing landfill.	2
1 c	(Below T_{g}) chains do not have enough energy (may describe in terms of vibration or motion of chains) (1); to move over/slide over one another (1); force applied to change shape of polymer will cause 'frozen' chains to break AW (1).	3
1 di	 Ester linkage correct (1); rest correct (1) ignore brackets.	2
1 dii	Intermolecular forces between chains are greater/stronger NOT 'MORE'(1); chains are able to get closer (because of the flat ring system) (1).	2

1 ei	$\begin{aligned} & K_{\mathrm{C}}=\frac{[\mathrm{B}] \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathbf{A}] \times\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]^{2}} \\ & {[\text { Products }] /[\text { Reactants }](1) ;} \\ & \text { Indices correct (1). } \end{aligned}$	2
1 e ii	Equilibrium position moves in endothermic direction/left since forward reaction is exothermic AW (1); K_{c}, decreases (1) ecf here for second mark.	2
1 e iii	Conc. sulphuric acid / c. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (1); Heat/warm (under reflux)/reflux (1)	2
Total		17

2 a			
2 b			

2 c v	$\mathrm{H}^{+}($aq) can be lost by acid/alcohol (1); forming an anion AW (1); marks can be gained by writing equations or by discussing extent of dissociation; acidity/equilibrium position depends on stability of anion (1); equilibrium position further to right for acid/charge spread out more/delocalisation in carboxylate ion AW (1); If the C=O group is recognised as enabling the H^{+}ion to dissociate more easily they can have 1 mark.	4
2 d i	Infrared frequencies are absorbed by molecules causing bonds to vibrate (faster) AW (1); different bonds/functional groups give peaks at different frequencies (1); C=O 1735-1750 $\mathrm{cm}^{-1}(1) ;$ $\mathrm{C}-\mathrm{O} 1050-1300 \mathrm{~cm}^{-1}(1)$.	4
2 d ii	Hydroxyl/alcohol/OH group (1); O-H peak/absorption at $3200-3600 \mathrm{~cm}^{-1}(1)$.	$\mathbf{2}$

\begin{tabular}{|c|c|c|}
\hline 3 a \& \begin{tabular}{l}
\[
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\] \\
correct formulae of substances (1); balanced correctly with electrons on left (1).
\end{tabular} \& 2 \\
\hline 3 bi \& \begin{tabular}{l}
Three marks for the points in bold and any three from four: \\
Use of pipette for measuring hydrogen peroxide (1); use of burette for manganate(VII) (1); \\
(Use of burette and pipette but with solutions switched is 1 mark only) addition of sulphuric acid (1) NOT hydrochloric/nitric acid; to conical flask with hydrogen peroxide (1); \\
slow addition at end point/dropwise/drop by drop/slowly/carefully (1); to pink/purple colour (if reverse addition then allow colourless but NOT pink) (1); repeat to give at least two concordant readings (1). \\
QWC \\
At least two readable and clear sentences with no more than one spelling, punctuation or grammatical error (1).
\end{tabular} \& 6

1

\hline 3 b ii \& | Moles of $\mathrm{MnO}_{4}^{-}=(18.2 / 1000) \times 0.0200(1)$; |
| :--- |
| moles of $\mathrm{H}_{2} \mathrm{O}_{2}=2.5 \times(18.2 / 1000) \times 0.0200$ (1) ecf; mark is for the 2.5 ratio |
| concentration $=0.910 \mathrm{~mol} \mathrm{dm}^{-3}$ (1) ecf; |
| answer to 3 sig. figs. (1). | \& 4

\hline 3 b iii \& ```
Mr of H2O2 = 34 (1);
mass of }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{O}}{2}{}\mathrm{ in 100 cm
or
max moles of }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{O}}{2}{}\mathrm{ allowed in 100 cm}\mp@subsup{}{}{3}\mathrm{ of water = 3.0/34 = 0.088 mol
therefore NO (1) ecf from (iii) and Mr of H2O}\mp@subsup{\textrm{O}}{2}{}\mathrm{ .

``` & 2 \\
\hline 3 ci & \begin{tabular}{l}
\[
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
\] \\
formulae correct, balanced and state symbols correct (1).
\end{tabular} & 1 \\
\hline 3 cii & (Glass =) heterogeneous because two phases/states AW (1); (Transition metal ions =) homogeneous because only one phase/state AW (1). & 2 \\
\hline 3 ciii & Measure volume of oxygen by syringe/over water (1); plot graph of volume of \(\mathrm{O}_{2}\) versus time (1); find gradient at time \(=0\) (1). & 3 \\
\hline 3 civ & \[
\begin{aligned}
& \text { Rate of decomposition }=k \times\left[\mathrm{H}_{2} \mathrm{O}_{2}\right](1) ; \\
& =2.0 \times 10^{-6}(\times 2.0) \mathrm{mol} \mathrm{dm} \\
& \mathrm{~s}^{-3}=4.0 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \operatorname{ecf}(1) .
\end{aligned}
\] & 2 \\
\hline \multicolumn{2}{|r|}{Total} & 23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4 ai & Oxidation of \(\mathrm{Fe}(\mathrm{II})\) ions/ \(\mathrm{Fe}(\mathrm{II})\) ion loses electron/ Fe (II) converted to \(\mathrm{Fe}(\mathrm{III})\) (1); by oxygen/air (1). & 2 \\
\hline 4 a ii & \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} / \mathrm{allow}\) hexaaqu(a/0)iron(III) or describe the complex correctly (1). & 1 \\
\hline 4 a iii & \begin{tabular}{l}
\[
\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})
\] \\
correct formula for \(\mathrm{Fe}\left(\mathrm{OH}_{3}\right)_{3}\) (1); \\
balanced equation as above (1) ignore spectator ions if balanced; correct state symbols (1).
\end{tabular} & 3 \\
\hline 4 bi & \begin{tabular}{l}
 \\
(1).
\end{tabular} & 1 \\
\hline 4 b ii & Ligand exchange/complex formation/ligand substitution/Ligand displacement (1). & 1 \\
\hline 4 b iii & \begin{tabular}{l}
Any two points from three: \\
d Electron energy levels are split / d electrons are excited (1); \\
by particular frequencies/wavelengths of light/radiation in visible region(1); hence colour transmitted is light NOT absorbed, in this case green/ complimentary colour is seen (1).
\end{tabular} & 2 \\
\hline 4 b iv & 6 (1); number of lone pairs/dative bonds/coordinate bonds/bonds (1); around central cation/ion/allow Fe atom (1). & 3 \\
\hline 4 b v &  & 2 \\
\hline & Total & 15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5 ai & Lone pair of electrons on N (1); can accept proton/hydrogen ion \(/ \mathrm{H}^{+}\)(1). & 2 \\
\hline 5 a ii & Water (1). & 1 \\
\hline 5 a iii & \begin{tabular}{l}
 \\
one mark for both hydrogen bonds (1); \\
one mark for both lone pairs (1); \\
partial charges correct (1). \\
If only one interaction shown but all three components are correct then give 2 marks.
\end{tabular} & 3 \\
\hline 5 a iv & Double helix (1). & 1 \\
\hline 5 bi & \begin{tabular}{l}
Two from the following four points \\
Smaller chain length \(/ M_{r}\) (1); \\
different bases (1) DO NOT ACCEPT ‘COMPLEMENTARY BASES’; \\
RNA has single chain (1); \\
Different sugar in chain (1).
\end{tabular} & 2 \\
\hline 5 b ii & \begin{tabular}{l}
Hydrogen bonds between DNA strands break (1); \\
DNA divides so that each strand acts as a template for new strand AW (1).
\end{tabular} & 2 \\
\hline & Total & 11 \\
\hline
\end{tabular}

Mark Scheme 2850
June 2006
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{} \\
\hline Question & Expected Answers & Marks \\
\hline 1 a & 3(1); 6(1); & 2 \\
\hline 1 bi & Base/alkali(ne)/basic & 1 \\
\hline 1 b ii & \begin{tabular}{l}
Reactivity (of elements/metals)/ease of ion formation/solubility of hydroxides(qualified)/atomic radius/density/ \(A_{\mathrm{r}} /\) mass no NOT b/mpt. \\
Thermal stability of carbonates/nitrates(qualified) Any one of (1)
\end{tabular} & 1 \\
\hline 1 b iii & \begin{tabular}{l}
Moles of \(\mathrm{CaO}=0.80 / 56(1) ;\{0.014\}\) ecf \\
(calculations via mass of \(\mathrm{CO}_{2}\) score above mark) \\
volume of gas \(=0.80 / 56 \times 24\{0.34\}\left(\mathrm{dm}^{3}\right)(1) ; \quad \rightarrow \mathrm{cm}^{3}(1) ; \quad \mathrm{sf}\), mark independently(1) 343 on own scores 3 . 340 on own scores all four.
\end{tabular} & 4 \\
\hline 1 ci & Arene(1); alkene(1); cycloalkane(1); alkane(1) & 4 \\
\hline 1c ii & \[
\begin{aligned}
& \left.115-130^{\circ}(1) ;\right] \\
& \text { three sets of electrons/areas of electron density (NOT bonds)(1); } \\
& \text { around (each) carbon(1);(do not penalize 'bonds' here) } \\
& \text { repel as far as possible(1); NOT atoms repel. NOT 'as much as possible' } \\
& \text { planar/flat(1) (DIAGRAMS -check text first, but can score latter mark ) }
\end{aligned}
\] & 5 \\
\hline 1 c iii & Breaking up (NOT cracking) large/long chain molecules(1); to form small(er)/short/unsaturated/(more) useful molecules(1); Specific names and substances OK but NOT particles & 2 \\
\hline 1 c iv & \begin{tabular}{l}
References to alternative pathway with lower \(E_{a} /\) meaning of heterogeneous catalysis can score 1 MARK then \\
Reactants adsorbed(1); (absorb on surface CON) bonds weaken/break(1); new bonds form(1); \\
Products leave/desorb(1) (any three or all four) \\
Separate last marking point for role of carbon as below \\
Carbon blocks surface/reactants cannot get on to surface AW(1) using 'substrate/enzyme kinetics ideas' maximum 4
\end{tabular} & \begin{tabular}{l}
1 \\
3/4 \\
1
\end{tabular} \\
\hline 1 cv & Contains pores/tunnels/sieve/honeycomb/channels/holes(1); similar size as (water) molecules AW(1) & 2 \\
\hline & 16 Total & 26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 2 ai & \begin{tabular}{l}
Mistakes: ionized by gainng electrons(1); high pressure curveq part of apparatus( (allow mass) \\
Corrections: loss of electrons(1); low pressure/(high)vacuum(1)/ \\
(mass/charge ratio) if three possibilities given max. 2 if one wrong
\end{tabular} & 4 \\
\hline 2 a ii & \(\mathrm{C}_{70}\) bod '70'(1); ignore any charges & 1 \\
\hline 2 bi & Two(1);additional/extra Neutrons in \({ }^{14} \mathrm{C}(1)\) (ora for \({ }^{12} \mathrm{C}\) )(1) allow 'it' for \(\mathrm{C}_{14}\) NOT different \(A_{r}\) 's & 2 \\
\hline 2 b ii & Very few \({ }^{14} \mathrm{C}\) (atoms) in ethanol from oil/no. significantly decreased(1); they have decayed/many half-lives passed (1); happened over millions/thousands of years/very long time/longer than 6000yrs(1) (allow reverse argument and AW) & 3 \\
\hline 2 c & \begin{tabular}{l}
(Coloured/bright/white) NOT black (con) lines(1); on a black/dark background(1);lines getting closer(1) NOT bands \\
Diagram can get all marks but needs explanation or shading for first two
\end{tabular} & 3 \\
\hline & Total & 13 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3 ai & \begin{tabular}{l}
\(\mathrm{Cs}(\mathrm{g}) \rightarrow \mathrm{Cs}^{+}\{\mathrm{g}\}+\mathrm{e}^{-} \quad\) formation of \(\mathrm{Cs}^{+}(1)\); \\
Equation correct(1) ecf wrong cation formed e.g. \(\mathrm{Cs}^{\text {to }} \mathrm{Cs}^{2+}\) \\
gaseous(1) \\
can have - \(\mathrm{e}^{-}\)on left' : ignore correct nuclear symbols: ' X ' scores two
\end{tabular} & 3 \\
\hline a ii & \begin{tabular}{l}
Outermost electron/shell gets further from nucleus in \(\mathrm{Cs} /\) more shells(1); \\
In Cs attraction to nucleus less/ shielding by inner shells(1) \\
easier to remove electron/less energy needed (1) \\
ora discussion in terms of energy levels fine \\
BOD 'rings' Nuclear charge lower used in answer CON
\end{tabular} & 3 \\
\hline b & Moles Cs 80.6/133(0.61)(1);Moles O 19.4/16(1.21)(1); (Allow ecf's) \(\mathrm{CsO}_{2}\) (1) \(\mathrm{Cs}_{2} \mathrm{O}\) need to track back to decide if worth one or two & 3 \\
\hline ci & Group number same/AW(1) as number of outer electrons(1) & 2 \\
\hline c ii & Same atomic no./no. of protons/(atoms of) same element(1); different mass no./no. of neutrons(1) molecules zero & 2 \\
\hline d & \begin{tabular}{l}
\[
{ }_{67}^{129} \boldsymbol{I} \rightarrow{ }_{68}^{129} \mathrm{Xe}+\stackrel{{ }_{-1} \mathrm{e}}{ }
\] \\
Mark as: correct symbol for beta particle(1); ignore any (-) on beta particle represented as 'decay'(1); \\
all correct (1)
\end{tabular} & 3 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4 a & \begin{tabular}{l}
correct no. of non-bonding electrons on left N and O atom (1); \\
6 electrons(any) between N atoms(1); \\
2 electrons of same symbol between right N and O atoms(1); correct symbols and no. across whole molecule(1)
\[
{ }_{=}^{x_{x}^{*}} N_{x}^{*} N_{x}^{*} O_{x}^{x}
\]
\end{tabular} & 4 \\
\hline 4 bi & \begin{tabular}{l}
energy to break bonds \(2 \times 481+2 \times 167(+1296)(1)\); \\
energy given out on bond formation \(2 \times 945+498(-2388)(1)\); \\
correct processing sign from working(1); \\
-1092( \(\mathrm{kJ} \mathrm{mol}^{-1}\) ) scores 4 (allow four marks for -546 also) ecf on first two marks \\
1092 on own(2); 1092 with working 2 or 3 (latter if process gives - )
\end{tabular} & 4 \\
\hline 4 b ii & Shorter/ smaller/very short/ bond in \(\mathrm{NO}(1)\) & 1 \\
\hline 4 c & More moles of products/molecules/particles(1) allow idea of more ways two different molecules mix NOT temp & 1 \\
\hline 4 di & oxygenates/oxygenated fuels & 1 \\
\hline 4 d ii & Alcohols (ignore references to primary, secondary etc) & 1 \\
\hline 4 d iii & (Fuel) pre-igniting(AW) (1); Octane number/rating (1) ; & 2 \\
\hline 4 ei & \(4 \mathrm{CH}_{3} \mathrm{NO}_{2}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{CO}_{2}\) formulae of reactants(1); products(1);(appropriate, e.g. \(21 \frac{1}{2}\), etc.) balancing(1) & 3 \\
\hline 4 e ii & \begin{tabular}{l}
\(\mathrm{N}_{2}+\mathrm{O}_{2}\) from air(1) look to give this as long as air mentioned); react/combine/combust/ \(\mathrm{N}_{2}\) oxidised/burns/bonds(1);NOT join/fuse \\
in high temp./heat/spark(of engine )(1); ignore refs. to 'incomplete '
\end{tabular} & 3 \\
\hline & Total & 20 \\
\hline
\end{tabular}

\section*{Mark Scheme 2852/01 \\ June 2006}

\section*{Chemistry}
\begin{tabular}{|c|l|c|c|}
\hline \begin{tabular}{l} 
Give an account of the chemistry of the reactions involved in the \\
formation of natural and synthetic rubber, identifying the similarities and \\
differences between the reactions.
\end{tabular} & & \\
\hline \(\mathbf{1}\) & Chemistry of polymerisation & 1 & \\
\hline a & \begin{tabular}{l} 
Statement: Natural rubber: isoprene polymerises (to give \\
poly(isoprene)).
\end{tabular} & 1 & \\
\hline b & \begin{tabular}{l} 
Synthetic rubbers use emulsion polymerisation: in water with \\
surfactant (at 5 \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & 1 & \\
\hline c & \begin{tabular}{l} 
Natural rubber is mainly cis and synthetic rubber contains a mixture of cis \\
and trans.
\end{tabular} & 1 & \\
\hline \(\mathbf{2}\) & Similarities and differences & 1 & \\
\hline a & Both reactions are addition polymerisation & 1 & \\
\hline b & \begin{tabular}{l} 
Diene polymerisation is not simple addition, two double bonds open to \\
form polymer with one double bond in repeating unit.
\end{tabular} & 1 & \\
\hline c & Many synthetic polymers are copolymers of a diene and an alkene; & \\
\hline d & Butyl rubber is a saturated hydrocarbon. & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline \begin{tabular}{l} 
Discuss how the structures of natural and vulcanised rubber determine \\
their properties and describe how vulcanising rubber leads to an \\
improvement in its properties for use in tyres.
\end{tabular} & & \\
\hline 3 & Structure of natural rubber & 1 & \\
\hline a & Cis has groups on same side of double bond & 1 & \\
\hline b & \begin{tabular}{l} 
Chains line up when stretched to form crystalline regions so that rubber \\
is stronger when stretched.
\end{tabular} & 1 & \\
\hline 4 & Process of vulcanisation & 1 & \\
\hline a & Vulcanising/heating/curing with sulphur very slow. & 1 & \\
\hline b & \begin{tabular}{l} 
Explanation of role of accelerator: accelerator has an atom of sulphur \\
in its molecule that initiates/speeds up the reaction.
\end{tabular} & 1 & \\
\hline c & accelerators act as catalysts & 1 & \\
\hline 5 & Props of vulcanised rubber & 1 & \\
\hline a & Contains cross links of sulphur. Statement or label on diagram & 1 \\
\hline b & \begin{tabular}{l} 
Vulcanised rubber is hard/durable/strong(AW) and does not \\
flow/soften at higher temperatures
\end{tabular} & 1 \\
\hline c & Chains cannot slide over each other in vulcanised rubber & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l} 
Describe the chemistry involved in recycling used tyres to produce \\
commercially important products, including activated charcoal and \\
phenol, and discuss how this recycling conserves non-renewable \\
resources.
\end{tabular}} & & \\
\hline 6 & Production of phenol & 1 & \\
\hline a & Pyrolysis oils contain benzene (compounds) & 1 & \\
\hline b & \begin{tabular}{l} 
Cumene process: benzene vapour and propene passed over a \\
phosphoric(V) acid catalyst at \(250^{\circ}\) C and 3000 kPa/30 atm \\
(if scored from equation do not count towards C3)
\end{tabular} & 1 & \\
\hline c & \begin{tabular}{l} 
Cumene is oxidised in air to form peroxide AND peroxide decomposes \\
in dilute acid to give phenol and propanone \\
(if scored from equation do not count towards C3)
\end{tabular} & 1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline 7 & Chemistry extra points (max 2) & & \\
\hline & A diene is an alkene with 2 double bonds & 1 & \\
\hline & Account of initiation/propagation steps in addition polymerisation & 1 & \\
\hline & Cis arrangement in natural rubber increases intermolecular forces & 1 & \\
\hline & Rubber is an elastomer & 1 & \\
\hline & \begin{tabular}{l} 
Zinc oxide and stearic acid used in vulcanisation to enhance physical \\
properties
\end{tabular} & 1 & \\
\hline & Definition of thermoplasticity/thermoplastic material (AW) & 1 & \\
\hline & Disulphide bridges are covalent bonds & \(\mathbf{1}\) & \\
\hline & Unsaturation/double bonds in the polymer enable cross-linking to occur & \(\mathbf{1}\) & \\
\hline & Examples of structures of other compounds produced by pyrolysis. & \(\mathbf{1}\) & \\
\hline & Carbon black properties change depending on the size of its particles & \(\mathbf{1}\) & \\
\hline
\end{tabular}

\section*{Evaluation}
\begin{tabular}{|c|l|c|c|}
\hline \begin{tabular}{l} 
Illustrate, using appropriate tables or charts, how the suitability of rubber \\
for car tyres has been improved by the use of synthetic rubbers and \\
additives.
\end{tabular} & & \\
\hline \(\mathbf{8}\) & Synthetic rubbers & \begin{tabular}{l} 
N.B. A DIRECT COPY OF TABLE 2 FROM ARTICLE 1 DOES NOT \\
SCORE BUT THEN 'COUNTS' AS A DIAGRAM
\end{tabular} & \\
\hline \(\mathbf{a}\) & \begin{tabular}{l} 
Different table or chart comparing the properties of rubber with at least \\
two named synthetic rubbers
\end{tabular} & \(\mathbf{1}\) \\
\hline \(\mathbf{9}\) & Additives & \begin{tabular}{l} 
If POINTS ARE NOT MADE IN TABLE MAX. 2 \\
TABLE DOES NOT 'COUNT' AS DIAGRAM
\end{tabular} & \(\mathbf{1}\) \\
\hline a & \begin{tabular}{l} 
Carbon black: \\
benefits: strengthens rubber; increases abrasion resistance, cut and tear \\
resistance; increases lifetime; increases resistance to light; \\
NEED THREE BENEFITS ACCEPT ALTERNATIVES
\end{tabular} & \(\mathbf{1}\) \\
\hline \(\mathbf{b}\) & \begin{tabular}{l} 
Oils and resins: \\
benefits: improves processing; improves adhesion of components; \\
improves wet traction; plasticises rubber; allows incorporation of carbon; \\
extends lifetime; reduces tyre cost; reduces tendency of tyre to become \\
brittle/ stops cracking; \\
NEED THREE BENEFITS ACCEPT ALTERNATIVES
\end{tabular} & \(\mathbf{1}\) \\
\hline c & \begin{tabular}{l} 
Anti-ageing chemicals: \\
extend life by giving resistance to heat; fatigue; weathering; exposure to \\
ultraviolet light; \\
NEED THREE EXAMPLES ACCEPT ALTERNATIVES
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|}
\hline \begin{tabular}{l} 
Describe the chemistry involved in recycling used tyres to produce \\
commercially important products, including activated carbon and phenol, \\
and discuss how this recycling conserves non-renewable resources.
\end{tabular} & & \\
\hline \(\mathbf{1 0}\) & Activated carbon & \\
\hline a & Explanation of pyrolysis: heating (to \(450-700^{\circ} \mathrm{C}\) ) with no oxygen & 1 \\
\hline b & Activated carbon is highly porous with a high surface area & 1 \\
\hline c & \begin{tabular}{l} 
Commercial importance: removes pollutants from gas/liquid streams \\
with one example: (e.g.) cooker hoods, gas masks, mercury
\end{tabular} & 1 \\
\hline d & \begin{tabular}{l} 
Improved processing removes the ash from the carbon using an acid \\
wash and activating at \(900^{\circ} \mathrm{C}\) to give a higher quality product
\end{tabular} & 1 \\
\hline e & \begin{tabular}{l} 
Discussion of the importance of removing mercury from industrial \\
effluent: emission levels are regulated and clean-up costs are high
\end{tabular} & 1 \\
\hline \(\mathbf{1 1}\) & Uses of products & \begin{tabular}{l} 
Hydrocarbons from pyrolysis (alkanes, alkenes and aromatics) are used \\
as fuels
\end{tabular} \\
\hline b & Pyrolysis oil / benzene derivatives can be used as a feedstock & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|}
\hline \(\mathbf{1 2}\) & Conserving non-renewable resources & \\
\hline \(\mathbf{a}\) & \begin{tabular}{l} 
Using car tyres as chemical feedstock conserves crude oil / fossil fuel \\
reserves
\end{tabular} & \(\mathbf{1}\) \\
\hline \(\mathbf{b}\) & \begin{tabular}{l} 
Using fuels from pyrolysis saves non-renewable fuels/fossil fuels (clear \\
statement)
\end{tabular} & \(\mathbf{1}\) \\
\hline \(\mathbf{c}\) & Save peat/coal used for making activated carbon & \(\mathbf{1}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline 13 & Evaluation extra points (max. 2) & & 1 \\
\hline & \begin{tabular}{l} 
Landfill causes environmental spoilage e.g. slow breakdown of rubber/ \\
leaching of harmful substances/ eyesore/ breeding of pests/ fire risk
\end{tabular} & & 1 \\
\hline & Space for landfill is limited & 1 \\
\hline & \begin{tabular}{l} 
Oil from pyrolysis has disadvantages e.g. high sulphur content/low \\
flashpoint
\end{tabular} & 1 \\
\hline & Uses of lower grade carbon e.g. plastic pipes/ shoes/ fuel & 1 \\
\hline & Idea of wasteful to put valuable chemicals in landfill & 1 \\
\hline & Lists figures for numbers / amounts of tyres disposed of annually & & 1 \\
\hline
\end{tabular}

\section*{Research skill in using and acknowledging sources of information}

R1 List of sources used which should include the articles in the question paper and at least two additional and relevant references.
1 for inclusion of Open Book paper articles (minimum: article \(1+\) article 2)
1 for TWO other sources, i.e. either or both Salters books + one other, OR two other sources, 1 for specification of the non-Open Book paper sources by page numbers, section titles, site titles, encyclopaedia sections, search engine criteria, [3 marks]

R2 Appropriate material selected from the question paper and elsewhere to produce a report within the required word limit

Examples of reasons why this mark may not be awarded include:
- exceeding the word count (see below)
- not declaring a page word count
- many sources quoted, with no evidence that they have been used
- excessive irrelevant material (use wavy line in left hand margin)
- inclusion of large amounts of material in appendices
- mis-use of sources e.g. repeated errors in material selected.

Guidance on word count
\begin{tabular}{|l|l|}
\hline\(<1050\) words & OK \\
\hline\(>1050<1100\) & Lose 1 mark (R2) \\
\hline\(>1100\) & \begin{tabular}{l} 
Draw line at about 1000. \\
Do not mark past this point \\
Lose 2 marks (R2 and C1b)
\end{tabular} \\
\hline \begin{tabular}{l} 
Words on diagrams/in equations do not count but \\
excessive use of lengthy text boxes inserted into \\
diagrams should be penalised.
\end{tabular} \\
\hline
\end{tabular}

R3 Text annotation
Text annotated where appropriate to acknowledge use of information from the sources listed (1 mark for 2 or more relevant annotations) [1 mark]
Examiner annotation: Underline candidate's annotation and write ' \(A\) ' in the left hand margin for the first two sources seen.
[Total: 5 marks]

\section*{Quality of Written Communication}

S Summary Four relevant CHEMICAL points which summarise the content of the candidate's own response.

Ideas to look for...
- chemical reaction or process (e.g. description of reaction or correct use of words such as oxidation, addition polymerisation, vulcanisation, pyrolysis)
- chemical terms (e.g. points made using words such as cis-trans, accelerator, catalyst)
- feature of a chemical compound or reaction (e.g. many monomers are dienes/alkenes, polymers are often copolymers)
- discussion of properties linked to structure (e.g. cross-links, thermoplastics)

\section*{Main Report}

\section*{C1 Structure of report}
a Well-structured report with relevant information organised clearly and coherently without undue repetition.

Examples of reasons why this mark may not be awarded.
- jumbled order or difficult to follow report.
- undue repetition (annotate ' \(R\) ' in left hand margin)
- a report where presentation and organisation of the information is weak enough to make the report difficult to follow.
b Balanced coverage of the required points.
Examples of reasons why this mark may not be awarded.
- exceeding the word count (see R2) insufficient balance in the coverage of the bullet points on the question paper (use the pattern of marks on the grid as a rough guide).

\section*{C2 Clear and correct use of language}
a Legible text, appropriate form and style of writing, grammar, punctuation and spelling accurate so that the meaning is clear.

2 spelling or grammatical errors lose 1 mark, 4 errors lose both marks.
Examiner annotation: by underlining error and writing ' \(S\) ' or ' \(G\) ' in left hand margin.
Examples of reasons why marks may not be awarded.
- Report not written in continuous prose e.g. note form or no use of paragraphs.
- Text or language is illegible or difficult to follow.
b Correct use of scientific and technical terms.
[2 marks]
2 scientific or technical term errors lose 1 mark, 4 errors lose both marks.
Examiner annotation: by underling error and writing ' \(T\) ' in the left hand margin.
Examples of errors.
- Misuse/omission of subscripts or superscripts from formulae.
- Gaps in word processed text e.g. omission of ' \(\rightarrow\) ' from equations.
- Incorrect terms used e.g. iodine for iodide.

Note: If the report contains no or very few scientific terms, diagrams or equations, one or both marks can be deducted due to insufficient evidence being available to award.

C3 Good use of equations and structural formulae [2 marks]
2 marks for 4 relevant and correct equations or structural formulae; 1 mark for 2 relevant and correct equation or structural formula

\section*{Notes}
- For minor errors e.g. missing subscripts, deduct technical language marks as shown in C2b but allow the equation to count towards marking point C3.
- If chemistry or evaluation marks have been scored exclusively from an unexplained equation then the equation cannot also 'count' towards marking point C3.
- Annotate script by writing ' \(E\) ' in the left hand margin.

\section*{List of possible equations and structural formulae}
\begin{tabular}{|l|l|l|}
\hline & 1 mark for 2 examples, 2 marks for 4 examples & \\
\hline & Structure of isoprene and poly(isoprene) & \\
& Structure of butadiene and poly(1,3-butadiene) & \\
& Structure of 2-methylpropene and (NB) its polymer & \\
& Structures to compare cis and trans isomers & \\
& \begin{tabular}{l} 
Structures of butadiene and phenylethene (styrene) \\
Structures of at least two accelerators for vulcanisation \\
Production of cumene in cumene process/Conversion of cumene to its \\
peroxide/Conversion of peroxide to phenol
\end{tabular} & \\
\hline
\end{tabular}

C4 Good use of appropriate illustrations (pictures, diagrams, tables, flow charts, graphs, etc.)
[2 marks]
2 marks for 2 relevant illustrations, well-positioned and labelled or well-linked into text; these may be from the articles in the question paper; 1 mark for 1 such diagram;
1 mark only if 2 relevant diagrams from articles simply photocopied and pasted in without further annotation or link from the text.
- Annotate script by writing ' \(D\) ' ('Diagram') in the left hand margin.

\section*{Notes}

Illustrations should be correctly placed so that they support the flow of the text. One or both marks can be lost if the illustrations are incorrectly placed.

\section*{List of possible illustrations}
\begin{tabular}{|l|l|l|}
\hline 1 mark for 1 example, \(\mathbf{2}\) marks for 2 examples & & \\
\hline Allow 'illustrative' photos to score (1) max & & \\
Cross-links and no cross-links in rubber & & \\
Structure of a car tyre & & \\
Table of properties of natural and synthetic rubbers & & \\
Table of additives and their advantages & \\
\hline
\end{tabular}

Mark Scheme 2854
June 2006

\begin{tabular}{|l|l|l|}
\hline 1 i & \begin{tabular}{l} 
ionic (1); strong electrostatic forces/bonds (lead to high melting point) (1); \\
(dissolves because) ions are hydrated/ ions form (ion-dipole) bonds/ ions attract \\
water moleules (1); \\
conducts because (free) ions can move (1)
\end{tabular} & 4 \\
& \begin{tabular}{l} 
ALLOW any of these with wrong structure type, also: \\
covalent - strong bonds or hydrogen bonds to water \\
metallic - strong bonds
\end{tabular} & Total
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 2 a & \(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}\) (1) for C and O (1) for \(\mathrm{H} ; \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{COOH}\) scores (1) & 2 \\
\hline 2 b & \begin{tabular}{l}
 (2) \\
(1) for correct structural formula or 8C acid with wrong double bond
\end{tabular} & 2 \\
\hline 2 ci & need not be skeletal (can be 2,3-iodobutane) & 2 \\
\hline 2 cii & orange/brown/purple to colourless/ paler colour (1) & 1 \\
\hline 2 c iii & \begin{tabular}{l}
\(6 \times 254 \mathrm{~g}\) of iodine (per 328 g DHA ) lodine no. \(=1524\) (ecf) \(\times 100 / 328=465\) \\
(1) for correct use of factor of 6 or 12 or use of \((100 / 328) \times(254\) or 127) \\
(1) for correct answer \\
(1) for 3sf mark separately provided some working.
\end{tabular} & 3 \\
\hline 2 d & meaning of cis - both groups on same side of \(\mathrm{C}=\mathrm{C}(\mathrm{AW})(1)\); fact that there is more than one cis group (1) mark separately & 2 \\
\hline 2 e & \begin{tabular}{l}
 \\
(1) correct ester formula (skeletal) anywhere; \\
(1) ester group on correct carbon (allow non-skeletal ester group for this mark)
\end{tabular} & 2 \\
\hline 2 f & \begin{tabular}{l}
Four from \\
A Imf in cholesterol: id-id/non-polar/only one polar group; \\
B Imf in water: hydrogen bonds; \\
C Imf between water and cholesterol: cholesterol cannot break water's imf/does not form (m)any hydrogen bonds/forms weaker imf/ forms id-id; \\
D Imf between cholesterol and octan-1-ol: forms imfs with octan-1-ol/ octan-1-ol non-polar \\
E Description: cholesterol more soluble in octan-1-ol/ large amount/concentration of cholesterol in octan-1-ol (little in water)/ large \(K_{\text {ow }}\)
\end{tabular} & 4 \\
\hline & Total & 18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3 a & Form \(\mathrm{B}, \mathrm{H}^{+}\)move equilibrium to right (1) & 1 \\
\hline 3 bi & phenol & 1 \\
\hline 3 b ii & purple/violet/mauve/pink colour (1) with (neutral) iron(III) (chloride) (1) mark separately IGNORE starting colour & 2 \\
\hline 3 ci & \begin{tabular}{l}
\(\qquad\) \\
O+. 5 electrons from oxygen (1); bonds (1); lone pair (only if one) (1) ALLOW "+"
\end{tabular} & 3 \\
\hline 3 cii & \begin{tabular}{l}
\[
120( \pm 5) \text { no ecf }(1)
\] \\
Idea of groups of electrons (AW) (1); repelling and getting as far apart as possible both ideas necessary (1) mark separately even if angle wrong
\end{tabular} & 3 \\
\hline 3 di & \begin{tabular}{l}
(1) (i.e. lowest arrow) \\
(1) \\
(1) mark separately
\end{tabular} & 3 \\
\hline 3 dii & electrophilic (1); elimination (1) mark separately & 2 \\
\hline 3 e & \begin{tabular}{l}
Four from the following points. \\
A Form B absorbs (certain frequencies of) visible light; \\
B (when) electrons excited (to higher energy-level); \\
C Form B is more delocalised/larger chromophore/ larger conjugated system/ more \\
conjugated (NOT extra double bond) (ora for Form A) \\
D because of alternating single and double bonds joining (benzene) rings (ora for Form A) \\
E Form B needs less energy to excite electrons (ora for Form A)/visible light has lower energy than u.v.; \\
F energy level difference measures frequency/wavelength absorbed/ \\
( \(\Delta\) ) \(E=h v\); \\
max 2 if emission of light (rather than transmission) is implied \\
QWC 2 sentences, SPAG correct (one error allowed) See notes
\end{tabular} & 4


1 \\
\hline 3 fi & any reference to colour & 1 \\
\hline 3 fii & conc nitric acid(1) conc sulphuric acid(1) conc (ACCEPT "c.")needs to be mentioned once, otherwise (1) for both acids.
\[
<55^{\circ} \mathrm{C} \text { (1) }
\] & 3 \\
\hline 3 fiii & electrophile/ic & 1 \\
\hline 3 fiv & (1-)nitrobenzene & 1 \\
\hline & Total & 26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 4 ai & It has \(3 \mathrm{COOH} /\) carboxyl groups / 3 exchangeable protons & 1 \\
\hline 4 a ii & carbon dioxide/ \(\mathrm{CO}_{2} / \mathrm{gas}\) & 1 \\
\hline 4 bi & \begin{tabular}{l}
\[
=(3 \times 70)+(3 \times 210)+200-300-200=+540
\] \\
(1) for prods - reacts; (1) for correct multiples; (1) for answer with sign ecf only if clear.
\end{tabular} & 3 \\
\hline 4 b ii & Two from: More molecules (formed); Gas molecules (formed, from solid); more ways of arrangement/ more disorder & 2 \\
\hline 4 b iii & \begin{tabular}{l}
\(\Delta S_{\text {surr }}=-\Delta H / T=70000 / 298=-234.8\) (allow \(-230[2\) sff) \\
540 (ecf from 4 b i ) \(235\left(1^{*}\right)=+305 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\) (1) for number (for ecf must be correctly calculated from working shown); (1) for sign and units allow +310 and answer in kJ units \\
*i.e. do not credit \(\Delta S_{\text {surr }}\) until units are clear.
\end{tabular} & 3 \\
\hline 4 b iv & It is spontaneous/will occur (at 298 K ) or AW in terms of context (e.g. 'sherbet does fizz') must correspond with sign of b iii (assume bare number is positive) & 1 \\
\hline 4 c & in equilibrium/ not fully dissociated/ionised NOT solely in terms of proton donation & 1 \\
\hline 4 di & \(K_{a}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\) (2); (1) for no [ ] or wrong way up) & 2 \\
\hline 4 dii & \[
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \times \mathrm{M}\right)(1) \text { stated, with numbers substituted, or implied }} \\
& =\sqrt{ }\left(7.5 \times 10^{-6}\right)=2.74 \times 10^{-3} \\
& \mathrm{pH}=2.6 / 2.56(1) \text { ecf from calculated value }
\end{aligned}
\] & 2 \\
\hline 4 ei & \begin{tabular}{l}
Addition of \(\mathrm{H}^{+}\)moves (equilibrium position) to left (1) \\
(removing \(\mathrm{H}^{+}\)and) maintaining/ restoring \(\mathrm{pH} /\left[\mathrm{H}^{+}\right]\)(1); ora for added \(\mathrm{OH}^{-}\) \\
mention of adding \(\mathrm{A}^{-}\)or HA is CON \\
This works because both \([\mathrm{HA}]\) and \([\mathrm{A}]\) are large/roughly equal/[A] much (AW) greater than \(\left[\mathrm{H}^{+}\right]\)/ plenty of \(\mathrm{A}^{-}\)to act as a 'sink' (1)
\end{tabular} & 3 \\
\hline 4 e ii & \begin{tabular}{l}
\(\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\)(1) stated, substituted or implied \(=7.5 \times 10^{-4} \times 0.5=3.75 \times 10^{-4}\) (1) ecf from given wrong formula provided it involves all quantities. \\
\(\mathrm{pH}=3.4\) (1) ecf from calculated value
\end{tabular} & 3 \\
\hline 4f & \begin{tabular}{l}
max two points for each technique - must be in pairs (describe and explain) mark separately within pairs except as shown. Best scoring pair to count for each. \\
mass spec. highest mass/molecular/parent ion \(/ \mathrm{M}^{+}\)peak(1); \\
gives \(M_{r} /\) (relative) molecular mass (allow "mass of molecule") is 192 (1) \\
or fragments/\{peaks at \(\left.M_{\mathrm{r}}-45 / M_{\mathrm{r}}-17\right\}(1)\); \\
showing presence of \(-\mathrm{COOH} /-\mathrm{OH}(1)\) depends on fragment mark \\
ir (absorption at) \(2500-3200\) (1); (-) \(\mathrm{O}(-) \mathrm{H}\) in acid (1) \\
or 3200-3600 (1); (-)O(-)H in alcohol (1) NOT 3600-3640 \\
or \(1700-1725\) (1); \(\mathrm{C}=\mathrm{O}\) (1) \\
nmr 4 (allow 3) peaks (1) deduce from ratios if shown, but ignore wrong values in ratios; \\
four/three (proton) environments deduce from explanation of ratio if necessary(1) \\
or peak at \(9-15(1) ;-\mathrm{COOH} /-\mathrm{OH}\) *in acid (1) \\
or 2.4 (1) \(\mathrm{CH}_{(2)}\) (1) \\
or \(0.5-4.5(1) ;-\mathrm{OH}^{*}\) in alcohol/ \(/ \mathrm{ROH}(1)\) * formula not just name \\
QWC Logical. Correct use of three of the following terms (2) \\
Correct use of two of the following terms (1) \\
peak, (relative) molecular mass \(/ M_{\mathrm{r}}\), molecular/parent ion, fragment(s), \\
absorption/absorbed etc., bond (in ir context), (proton) environment, (chemical) shift, proton (except in 'proton nmr'), wavenumber/ \(\mathrm{cm}^{-1}\)
\end{tabular} & 6 \\
\hline & Total & 30 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5 a & oxidation state of chromium NOT of chromate (numbers other than 6, +6 are CON) & 1 \\
\hline 5 b & \[
\begin{array}{|l}
\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow{ }_{\mathrm{PbCrO}}^{4}(\mathrm{~s}) \\
\text { Equation (1); state symbois (1) provided two ions give lead chromate } \\
\hline
\end{array}
\] & 2 \\
\hline 5 c & polymorphism & 1 \\
\hline 5 d & C (1); yellow is reflected (1) second mark depends on first & 2 \\
\hline 5 ei & iron(III) oxide ignore gaps and brackets & 1 \\
\hline 5 e ii & \begin{tabular}{l}
suitable diagram showing lines getting closer at higher energy (minimum three levels) (1) (lines horizontal or circular); \\
description (or labels on diagram) including: \\
(electron) energy levels (1); \\
(electron) falling (1); \\
energy change related to frequency wavelength \(/(\Delta) E=h v(1)\)
\end{tabular} & 4 \\
\hline 5 e iii & cadmium (1); cadmium-sulphide (1) no ecf on second mark & 2 \\
\hline 5 f & \begin{tabular}{l}
\[
\begin{array}{ll}
\mathrm{PbCrO}_{4}(\mathrm{~s}) & \mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq}) \text { or } \mathrm{PbCrO}_{4}(\mathrm{aq}) \\
\\
\hline
\end{array}
\] \\
(1) for line above printed line (ignore other lines IF correctly labelled) \\
(1) for correct labelling of line (depends on first)
\end{tabular} & 2 \\
\hline 5 gi & \begin{tabular}{l}
\(K_{\text {sp }}=\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})\right]\) state symbols not required \\
(2) completely correct \\
(1) if \(\mathrm{PbCrO}_{4}\) shown as divisor.
\end{tabular} & 2 \\
\hline 5 g ii & ```
Yes, because \(\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right] \times\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})\right] /\) product of concentrations \(/ 1 \times 10^{-8}(1)\);
\(\left(\right.\) NOTK \(\left._{s p}=1 \times 10^{-8}\right)\)
greater than \(K_{\text {sp }} / 2.5 \times 10^{-14}(1)\)
or calculated \(\left[\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})\right]\) from \(K_{\mathrm{sp}}(1)\); compare with \(1 \times 10^{-4}(1)\)
``` & 2 \\
\hline 5 g iii & \begin{tabular}{l}
lead chromate (1) \\
solubility product will be exceeded first/ least soluble/ smaller \(K_{\text {sp }}\) (1) depends on first
\end{tabular} & 2 \\
\hline & Total & 21 \\
\hline
\end{tabular}

Advanced GCE Chemistry (Salters) 3887/7887 June 2006 Assessment Series

\section*{Unit Threshold Marks}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Unit & \begin{tabular}{c}
Maximum \\
Mark
\end{tabular} & \(\mathbf{a}\) & \(\mathbf{b}\) & \(\mathbf{c}\) & \(\mathbf{d}\) & \(\mathbf{e}\) & \(\mathbf{u}\) \\
\hline \multirow{2}{*}{\(\mathbf{2 8 4 8}\)} & Raw & 90 & 63 & 54 & 46 & 38 & 30 & 0 \\
\cline { 2 - 9 } & UMS & 120 & 96 & 84 & 72 & 60 & 48 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 4 9}\)} & Raw & 90 & 61 & 54 & 47 & 41 & 35 & 0 \\
\cline { 2 - 9 } & UMS & 90 & 72 & 63 & 54 & 45 & 36 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 5 0}\)} & Raw & 75 & 58 & 50 & 43 & 36 & 29 & 0 \\
\cline { 2 - 9 } & UMS & 90 & 72 & 63 & 54 & 45 & 36 & 0 \\
\hline \multirow{2}{*}{ 2852A } & Raw & 90 & 73 & 67 & 61 & 55 & 49 & 0 \\
\cline { 2 - 9 } & UMS & 90 & 72 & 63 & 54 & 45 & 36 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 5 2 B}\)} & Raw & 90 & 73 & 67 & 61 & 55 & 49 & 0 \\
\cline { 2 - 9 } & UMS & 90 & 72 & 63 & 54 & 45 & 36 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 5 4}\)} & Raw & 120 & 90 & 79 & 69 & 59 & 49 & 0 \\
\cline { 2 - 9 } & UMS & 120 & 96 & 84 & 72 & 60 & 48 & 0 \\
\hline \multirow{2}{*}{\(\mathbf{2 8 5 5}\)} & Raw & 90 & 76 & 68 & 60 & 52 & 44 & 0 \\
\cline { 2 - 9 } & UMS & 90 & 72 & 63 & 54 & 45 & 36 & 0 \\
\hline
\end{tabular}

\section*{Specification Aggregation Results}

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \begin{tabular}{c}
Maximum \\
Mark
\end{tabular} & A & B & C & D & E & U \\
\hline \(\mathbf{3 8 8 7}\) & 300 & 240 & 210 & 180 & 150 & 120 & 0 \\
\hline \(\mathbf{7 8 8 7}\) & 600 & 480 & 420 & 360 & 300 & 240 & 0 \\
\hline
\end{tabular}

The cumulative percentage of candidates awarded each grade was as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & A & B & C & D & E & U & \begin{tabular}{c}
Total Number of \\
Candidates
\end{tabular} \\
\hline \(\mathbf{3 8 8 7}\) & 19.8 & 39.8 & 59.2 & 75.0 & 87.8 & 100.0 & 9171 \\
\hline \(\mathbf{7 8 8 7}\) & 28.5 & 52.3 & 72.8 & 87.6 & 96.7 & 100.0 & 6637 \\
\hline
\end{tabular}

For a description of how UMS marks are calculated see;
www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp
Statistics are correct at the time of publication.

\title{
OCR (Oxford Cambridge and RSA Examinations)
}

\section*{1 Hills Road}

\section*{Cambridge}

\section*{CB1 2EU}

\section*{OCR Information Bureau}
(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

\section*{Oxford Cambridge and RSA Examinations}
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553```

